17の倍数判定法(17で割り切れる数の見分け方)①
一の位の数の5倍と十の位以上の数との差が17の倍数であれば、その数は17で割り切れる。
なぜ17で割り切れるのか?①
十の位以上の数がa、一の位の数がbの整数mについて、
m=10×a+b
5×m=50×a+5×b
=51×a+(5×b-a)
=17×(3×a)+(5×b-a)
(3×a)は整数なので、17×(3×a)は17の倍数。
5×mが17の倍数であるためには(5×b-a)が17の倍数であればよい。
5と17は互いに素であるから5×mが17の倍数であればmも17の倍数となる。
つまり、一の位の数の5倍と十の位以上の数の差が17の倍数となる整数は17で割り切れる。
17で割り切れる数の一例①
9741の場合、
一の位の数の5倍が1×5=5、十の位以上の数が974で、その差は969。
969は一の位の数の5倍が9×5=45、十の位以上の数が96で、その差は51。
一の位の数の5倍と十の位以上の数の差51が17の倍数なので969は17で割り切れる。
よって、9741は17で割り切れる。
17の倍数判定法(17で割り切れる数の見分け方)②
百の位以上の数の2倍と下二桁の数の差が17の倍数であれば、その数は17で割り切れる。
なぜ17で割り切れるのか?②
百の位以上の数がa、下二桁の数がbの整数mについて、
m=100×a+b
=(102-2)×a+b
=17×(6×a)+(b-2×a)
(6×a)は整数なので、17×(6×a)は17の倍数。
mが17の倍数であるためには(b-2×a)が17の倍数であればよい。
つまり、百の位以上の数の2倍と下二桁の数の差が17の倍数となる整数は17で割り切れる。
17で割り切れる数の一例②
741829の場合、
百の位以上の数の2倍が29×2=14836、下二桁の数が29で、その差は14807。
14807はの百の位以上の数2倍が148×2=296で下二桁の数が7で、その差は289。
百の位以上の数の2倍と下二桁の数の差289が17の倍数なので14807は17で割り切れる。
よって、741829は17で割り切れる。
『e学ぼ』で17の倍数判定法(17で割り切れる数の見分け方)を用いて素早く17の倍数かどうかを判断しよう!
日々の練習の積み重ねで得点力向上!!